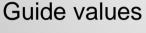


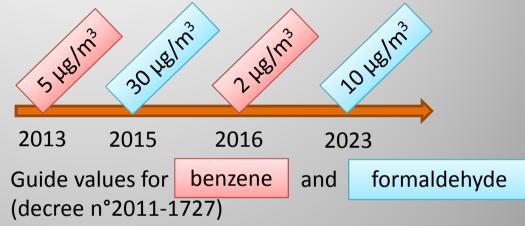
New measurement and modelling approach to evaluate and predict the impact of building materials on indoor air quality

Delphine Bourdin^{1,2}, Pierre Mocho³, Christophe Cantau¹and Valérie Desauziers²

Contact: dbourdin@nobatek.com


¹Nobatek, France ²C2MA, Mining School of Alès, France ³LaTEP, University of Pau, France

French Legislation

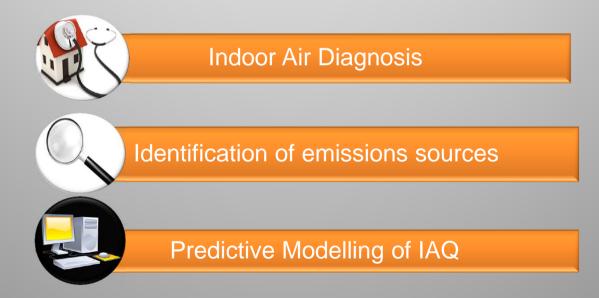

Indoor air quality in public buildings (schools, childcare center...)

Compulsory measurement of pollutants (benzene, formaldehyde, CO₂) every 7 years (decree n° 2012-14)

Labeling of all building materials (decree n° 2011-321)

28-day test

Exposure concentrations for 11 compounds, including formaldehyde, and TVOC


CLIMA 2013, 18th June 2013

Role of building materials

Airtight Buildings + Emissions from materials

Indoor Air more polluted than outdoor air

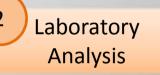
Materials = main sources of VOCs and formaldehyde found in indoor air

Analytical Methods: Description

Solid-Phase Micro Extraction (SPME)

<u>Air</u>

- Vial equipped with a SPME-adapter
- Carried under vacuum
- Filled on-site in a few seconds



Material Emissions

- Emission cell put on the material
- Emission of the material into the cell
- SPME sampling
- Measurement of a surface concentration CLIMA 2013, 18th June 2013

• Passive sampler

- Amount of pollutants collected on the fiber proportional to its concentration and to exposure time
- Modified SPME fiber: simultaneous analysis of VOCs and formaldehyde

- Chromatographic analysis
- Mass spectrometer detection

Analytical Methods: Performances

✓ Developped for 9 compounds : toluene, p-xylene, styrene, 1,2-dichlorobenzene, tetrachloroethylene, formaldehyde, acetaldehyde, hexanal and α -pinene.

	R ²	LOD (µg.m ⁻³)	LOQ (µg.m ⁻³)	RSD (n=6)	Analytical performances in GC/MS,
Average for the 9 compounds	0.97	0.034	0.114	18	SPME extraction: 20 minutes

- ✓ Limits of quantification low enough to study indoor air quality
- Results in good agreement with those obtained by active sampling on Tenax[®] tubes (VOCs analysis) or DNPH cartridges (formaldehyde)

	SPME (µg.m-3) (n=6)	Normalized method (µg.m-3) (n=3)
Formaldehyde	11.5 ± 1.5	12.3 ± 1.0
α-pinene	101.5 ± 21.0	103.3 ± 8.1
styrene	1.3 ± 0.3	2.4 ± 1.0

Relative air humidity do not have any influence on SPME sampling

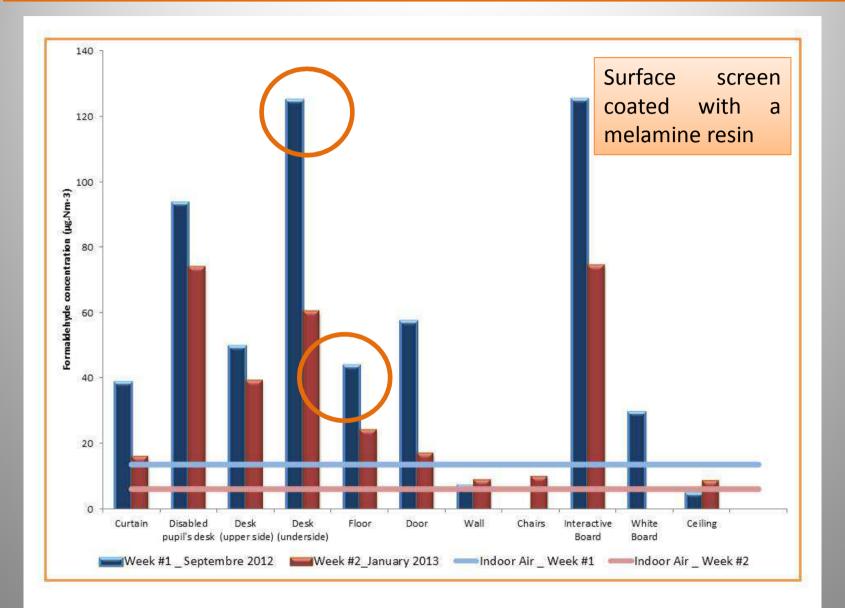
Case studies

Three sites were studied

- > Built with a high environmental quality (HEQ) approach
- New buildings or constructed less than 2 years ago
 - Meeting room in an office building
 - Classroom in a high school
 - Unoccupied house

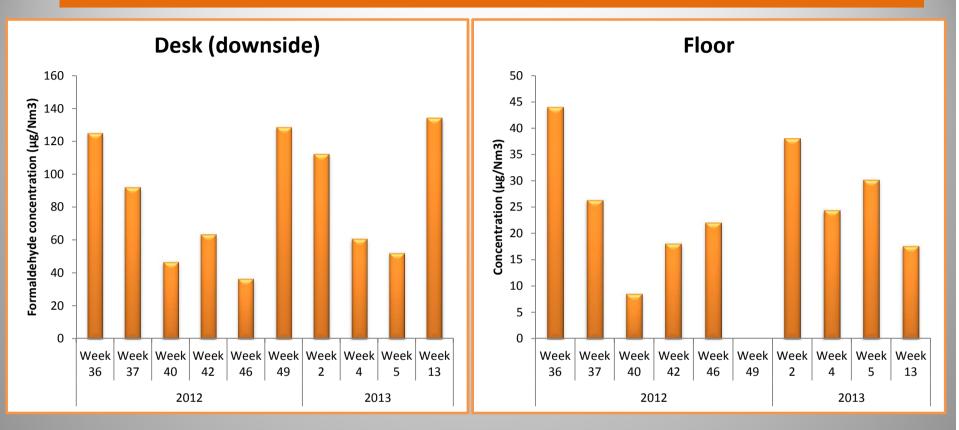
Site Description

Ventilation	Mechanical	
Occupancy	25 pupils 4 days per week	
Furniture	Particle board desks Beech wood chairs	
Decoration	Polyester curtain	
Walls	Paint	
Ceiling	Suspended ceiling	
Floor	PVC	
Boards	"Classical" whiteboard Interactive board	


- Six-month study
- Measurement campaigns held every 2 or 3 weeks
- Indoor air, outdoor air, material emissions

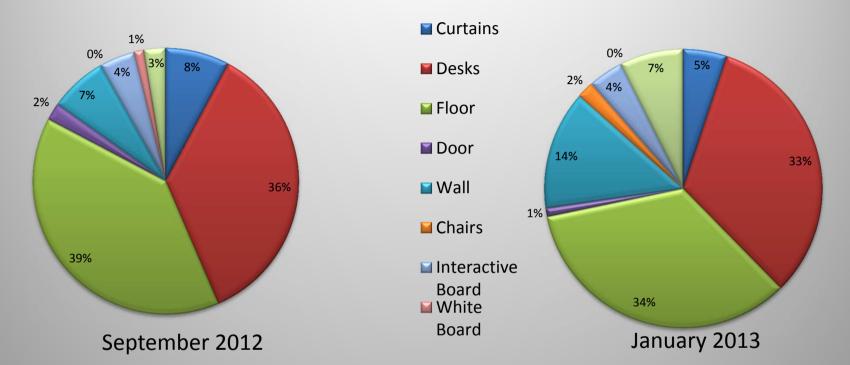
Formaldehyde

Hexanal

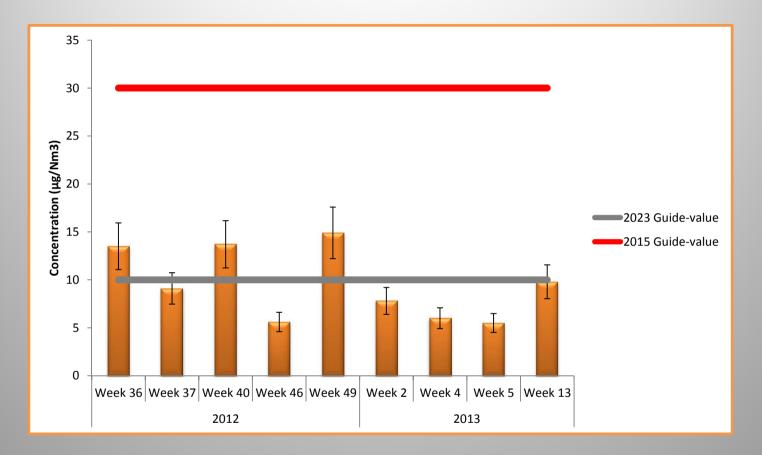

Alpha-pinene

Identification of formaldehyde sources

CLIMA 2013, 18th June 2013


Evolution of material emissions with time

- Important variations of material emissions from one week to another
- Interest to realize on-site measurements
- Difference between material's behavior in an environmental chamber and in real conditions


Classification of formaldehyde sources

Considering the surface of each materials...

- Even if the material formaldehyde emission changed a lot, the ranking between the materials did not change
- Main contributor: floor because of its high surface in the room. Formaldehyde may come from the adhesive used for its setting up
- Important impact of the furniture made of particle board

Impact on indoor air quality

Indoor air concentration well controlled, even in presence of numerous emission sources, thanks to an efficient ventilation (3.3 vol/h)

(Air exchange rate was determined by the injection of a tracer gas)

Conclusion

- ✓ Simple, fast and sensitive analytical method to study on-site indoor air quality and building material emissions
- ✓ Interest to realize in situ measurement and to study materials in their "real" environments
- ✓ Identification of emissions' sources

Thanks for your attention

Contact :

www.nobatek.com dbourdin@nobatek.com

